Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
1.
J Inherit Metab Dis ; 47(2): 355-365, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38467596

RESUMO

Lysosomal enzyme deficiency in mucopolysaccharidosis (MPS) I results in glycosaminoglycan (GAG) accumulation leading to pain and limited physical function. Disease-modifying treatments for MPS I, enzyme replacement, and hematopoietic stem cell therapy (HSCT), do not completely resolve MPS I symptoms, particularly skeletal manifestations. The GAG reduction, anti-inflammatory, analgesic, and tissue remodeling properties of pentosan polysulfate sodium (PPS) may provide disease-modifying treatment for musculoskeletal symptoms and joint inflammation in MPS I following ERT and/or HSCT. The safety and efficacy of PPS were evaluated in four subjects with MPS I aged 14-19 years, previously treated with ERT and/or HSCT. Subjects received doses of 0.75 mg/kg or 1.5 mg/kg PPS via subcutaneous injections weekly for 12 weeks, then every 2 weeks for up to 72 weeks. PPS was well tolerated at both doses with no serious adverse events. MPS I GAG fragment (UA-HNAc [1S]) levels decreased at 73 weeks. Cartilage degradation biomarkers serum C-telopeptide of crosslinked collagen (CTX) type I (CTX-I) and type II (CTX-II) and urine CTX-II decreased in all subjects through 73 weeks. PROMIS scores for pain interference, pain behavior, and fatigue decreased in all subjects through 73 weeks. Physical function, measured by walking distance and dominant hand function, improved at 49 and 73 weeks. Decreased GAG fragments and cartilage degradation biomarkers, and positive PROMIS outcomes support continued study of PPS as a potential disease-modifying treatment for MPS I with improved pain and function outcomes.


Assuntos
Mucopolissacaridose I , Humanos , Mucopolissacaridose I/tratamento farmacológico , Poliéster Sulfúrico de Pentosana/uso terapêutico , Poliéster Sulfúrico de Pentosana/farmacologia , Cartilagem/metabolismo , Biomarcadores , Dor/tratamento farmacológico , Dor/etiologia , Terapia de Reposição de Enzimas
3.
mBio ; 15(1): e0276123, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38078750

RESUMO

The American Academy of Microbiology convened a workshop bringing together scientists with varied opinions on the conduct of gain-of-function research of concern (GOFROC) and enhanced pathogen with pandemic potential (ePPP) research. Five findings were: (1) research on infectious agents is necessary for understanding, monitoring, and developing treatments and prevention measures against these agents; (2) gain-of-function research of concern or ePPP research makes up a very small fraction of all biological research; (3) clearly defined terminologies for research of concern should be developed by the scientific community to avoid public confusion and highlight its practical benefits; (4) harmonized biorisk management standardization, training, mentoring, and reporting can help improve safety and security for laboratory workers and the public; and (5) expanded engagement and collaboration of scientists with policymakers and the public, including increased transparency on the risks and rewards of research with infectious agents, is needed.


Assuntos
Mutação com Ganho de Função , Pandemias , Humanos , Estados Unidos , Pandemias/prevenção & controle
4.
mSphere ; 9(1): e0071423, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38132562

RESUMO

The phrase "gain of function" (GOF) has recently acquired a negative connotation in experimental biology by its association with risky science. Whereas much of the discussion on the relative merits of GOF-type experiments has focused on their risk-benefit equation, relatively little has been said about their epistemic value. In this article, we recount how GOF experiments were critical for establishing DNA as the genetic material, the identification of cellular receptors, and the role of oncogenes in cancer research. Today, many of the products of the biomedical revolution such as synthetic insulin, growth factors, and monoclonal antibodies are the result of GOF experiments where cells were given the new function of synthesizing medically important products. GOF experiments and complementary loss of function experiments are epistemically powerful tools for establishing causality in biology.


Assuntos
Pesquisa Biomédica , Mutação com Ganho de Função , Oncogenes , Medição de Risco
5.
mSphere ; 8(6): e0048523, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37850790
6.
J AAPOS ; 27(4): 208-211, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37321343

RESUMO

Cerebrotendinous xanthomatosis (CTX) is a rare, autosomal recessive bile acid synthesis disorder caused by pathologic variants in CYP27A1, a gene involved in bile acid synthesis. Impaired function in this gene leads to accumulation of plasma cholestanol (PC) in various tissues, often in early childhood, resulting in such clinical signs as infantile diarrhea, early-onset bilateral cataracts, and neurological deterioration. The current study aimed to identify cases of CTX in a population of patients with a greater CTX prevalence than the general population, to facilitate early diagnosis. Patients diagnosed with early-onset, apparently idiopathic, bilateral cataracts between the ages of 2 and 21 years were enrolled. Genetic testing of patients with elevated PC and urinary bile alcohol (UBA) levels was used to confirm CTX diagnosis and determine CTX prevalence. Of 426 patients who completed the study, 26 met genetic testing criteria (PC ≥ 0.4 mg/dL and positive UBA test), and 4 were confirmed to have CTX. Prevalence was found to be 0.9% in enrolled patients, and 15.4% in patients who met the criteria for genetic testing.


Assuntos
Catarata , Xantomatose Cerebrotendinosa , Pré-Escolar , Humanos , Criança , Adolescente , Adulto Jovem , Adulto , Xantomatose Cerebrotendinosa/diagnóstico , Xantomatose Cerebrotendinosa/epidemiologia , Xantomatose Cerebrotendinosa/genética , Prevalência , Colestanol , Ácidos e Sais Biliares , Catarata/diagnóstico , Catarata/epidemiologia , Catarata/genética
7.
JAMA Netw Open ; 6(6): e2320796, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37378978

RESUMO

Importance: Institutions and journals strive to promote and protect the integrity of the research record, and both groups are equally committed to ensuring the reliability of all published data. Observations: Three US universities coordinated a series of virtual meetings from June 2021 to March 2022 for a working group composed of senior, experienced US research integrity officers (RIOs), journal editors, and publishing staff who are familiar with managing issues of research integrity and publication ethics. The goal of the working group was to improve the collaboration and transparency between institutions and journals to ensure that research misconduct and publication ethics are managed properly and efficiently. Recommendations address the following: identifying proper contacts at institutions and journals, specifying information to share between institutions and journals, correcting the research record, reconsideration of some fundamental research misconduct concepts, and journal policy changes. The working group identified 3 key recommendations to be adopted and implemented to change the status quo for better collaboration between institutions and journals: (1) reconsideration and broadening of the interpretation by institutions of the need-to-know criteria in federal regulations (ie, confidential or sensitive information and data are not disclosed unless there is a need for an individual to know the facts to perform specific jobs or functions), (2) uncoupling the evaluation of the accuracy and validity of research data from the determination of culpability and intent of the individuals involved, and (3) initiating a widespread change for the policies of journals and publishers regarding the timing and appropriateness for contacting institutions, either before or concurrently under certain conditions, when contacting the authors. Conclusions and Relevance: The working group recommends specific changes to the status quo to enable effective communication between institutions and journals. Using confidentiality clauses and agreements to impede sharing does not benefit the scientific community nor the integrity of the research record. However, a careful and informed framework for improving communications and sharing information between institutions and journals can foster better working relationships, trust, transparency, and most importantly, faster resolution to data integrity issues, especially in published literature.


Assuntos
Publicações Periódicas como Assunto , Má Conduta Científica , Humanos , Editoração , Reprodutibilidade dos Testes , Confidencialidade
8.
Microbiol Spectr ; 11(3): e0087323, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37154756

RESUMO

By adulthood, the majority of the population is persistently infected with BK polyomavirus (BKPyV). Only a subset of the population, generally transplant recipients on immunosuppressive drugs, will experience disease from BKPyV, but those who do have few treatment options and, frequently, poor outcomes, because to date there are no effective antivirals to treat or approved vaccines to prevent BKPyV. Most studies of BKPyV have been performed on bulk populations of cells, and the dynamics of infection at single-cell resolution have not been explored. As a result, much of our knowledge is based upon the assumption that all cells within a greater population are behaving the same way with respect to infection. The present study examines BKPyV infection on a single-cell level using high-content microscopy to measure and analyze the viral protein large T antigen (TAg), promyelocytic leukemia protein (PML), DNA, and nuclear morphological features. We observed significant heterogeneity among infected cells, within and across time points. We found that the levels of TAg within individual cells did not necessarily increase with time and that cells with the same TAg levels varied in other ways. Overall, high-content, single-cell microscopy is a novel approach to studying BKPyV that enables experimental insight into the heterogenous nature of the infection. IMPORTANCE BK polyomavirus (BKPyV) is a human pathogen that infects nearly everyone by adulthood and persists throughout a person's life. Only people with significant immune suppression develop disease from the virus, however. Until recently the only practical means of studying many viral infections was to infect a group of cells in the laboratory and measure the outcomes in that group. However, interpreting these bulk population experiments requires the assumption that infection influences all cells within a group similarly. This assumption has not held for multiple viruses tested so far. Our study establishes a novel single-cell microscopy assay for BKPyV infection. Using this assay, we discovered differences among individual infected cells that have not been apparent in bulk population studies. The knowledge gained in this study and the potential for future use demonstrate the power of this assay as a tool for understanding the biology of BKPyV.


Assuntos
Vírus BK , Infecções por Polyomavirus , Infecções Tumorais por Vírus , Humanos , Adulto , Microscopia , Proteínas Virais , Antivirais
9.
J Virol ; 97(5): e0054423, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37166327

RESUMO

The interface between humans and wildlife is changing and, with it, the potential for pathogen introduction into humans has increased. Avian influenza is a prominent example, with an ongoing outbreak showing the unprecedented expansion of both geographic and host ranges. Research in the field is essential to understand this and other zoonotic threats. Only by monitoring dynamic viral populations and defining their biology in situ can we gather the information needed to ensure effective pandemic preparation.


Assuntos
Influenza Aviária , Influenza Humana , Zoonoses , Animais , Humanos , Animais Selvagens , Surtos de Doenças , Especificidade de Hospedeiro , Influenza Aviária/epidemiologia , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Pandemias , Zoonoses/epidemiologia , Zoonoses/prevenção & controle
10.
J Virol ; 97(5): e0034323, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37166336

RESUMO

BK virus (BKV; human polyomavirus 1) infections are asymptomatic in most individuals, and the virus persists throughout life without harm. However, BKV is a threat to transplant patients and those with immunosuppressive disorders. Under these circumstances, the virus can replicate robustly in proximal tubule epithelial cells (PT). Cultured renal proximal tubule epithelial cells (RPTE) are permissive to BKV and have been used extensively to characterize different aspects of BKV infection. Recently, lines of hTERT-immortalized RPTE have become available, and preliminary studies indicate they support BKV infection as well. Our results indicate that BKV infection leads to a similar response in primary and immortalized RPTE. In addition, we examined the patterns of global gene expression of primary and immortalized RPTE and compared them with uncultured PT freshly dissociated from human kidney. As expected, PT isolated from the healthy kidney express a number of differentiation-specific genes that are associated with kidney function. However, the expression of most of these genes is absent or repressed in cultured RPTE. Rather, cultured RPTE exhibit a gene expression profile indicative of a stressed or injured kidney. Inoculation of cultured RPTE with BKV results in the suppression of many genes associated with kidney stress. In summary, this study demonstrated similar global gene expression patterns and responses to BKV infection between primary and immortalized RPTE. Moreover, results from bulk transcriptome sequencing (RNA-seq) and SCT experiments revealed distinct transcriptomic signatures representing cell injury and stress in primary RPTE in contrast to the uncultured, freshly dissociated PT from human kidney. IMPORTANCE Cultured primary human cells provide powerful tools for the study of viral infectious cycles and host virus interactions. In the case of BKV-associated nephropathy, viral replication occurs primarily in the proximal tubule epithelia in the kidney. Consequently, cultured primary and immortalized renal proximal tubule epithelial cells (RPTE) are widely used to study BKV infection. In this work, using bulk and single-cell transcriptomics, we found that primary and immortalized RPTE responded similarly to BKV infection. However, both uninfected primary and immortalized RPTE have gene expression profiles that are markedly different from healthy proximal tubule epithelia isolated directly from human kidney without culture. Cultured RPTE are in a gene expression state indicative of an injured or stressed kidney. These results raise the possibility that BKV replicates preferentially in injured or stressed kidney epithelial cells during nephropathy.


Assuntos
Vírus BK , Células Epiteliais , Nefropatias , Infecções por Polyomavirus , Infecções Tumorais por Vírus , Humanos , Vírus BK/genética , Células Cultivadas , Rim/citologia , Nefropatias/virologia , Infecções por Polyomavirus/complicações , Infecções Tumorais por Vírus/complicações
11.
mSphere ; 8(3): e0015523, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37036354
12.
J Virol ; 97(3): e0007723, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36916919

RESUMO

Polyomavirus small T antigen (tAg) plays important roles in regulating viral replication, the innate immune response, apoptosis, and transformation for SV40, Merkel cell polyomavirus (MCPyV), murine polyomavirus (MuPyV), and JC polyomavirus (JCPyV). However, the function of BK polyomavirus (BKPyV) tAg has been much less studied. Here, we constructed mutant viruses that do not express tAg, and we showed that, in contrast with other polyomaviruses, BKPyV tAg inhibits large T antigen (TAg) gene expression and viral DNA replication. However, this occurs only in an archetype viral background. We also observed that the transduction of cells with a lentivirus-expressing BKPyV tAg kills the cells. We further discovered that BKPyV tAg interacts not only with PP2A A and C subunits, as has been demonstrated for other polyomavirus tAg proteins, but also with PP2A B''' subunit members. Knocking down either of two B''' subunits, namely STRN or STRN3, mimics the phenotype of the tAg mutant virus. However, a virus containing a point mutation in the PP2A binding domain of tAg only partially affected virus TAg expression and DNA replication. These results indicate that BKPyV tAg downregulates viral gene expression and DNA replication and that this occurs in part through interactions with PP2A. IMPORTANCE BK polyomavirus is a virus that establishes a lifelong infection of the majority of people. The infection usually does not cause any clinical symptoms, but, in transplant recipients whose immune systems have been suppressed, unchecked virus replication can cause severe disease. In this study, we show that a viral protein called small T antigen is one of the ways that the virus can persist without high levels of replication. Understanding which factors control viral replication enhances our knowledge of the virus life cycle and could lead to potential interventions for these patients.


Assuntos
Vírus BK , Infecções por Polyomavirus , Animais , Camundongos , Antígenos Virais de Tumores/genética , Antígenos Virais de Tumores/metabolismo , Vírus BK/fisiologia , Replicação do DNA , DNA Viral/genética , Replicação Viral/fisiologia
13.
mSphere ; 8(2): e0011923, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36897078

RESUMO

When humans experience a new, devastating viral infection such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), significant challenges arise. How should individuals as well as societies respond to the situation? One of the primary questions concerns the origin of the SARS-CoV-2 virus that infected and was transmitted efficiently among humans, resulting in a pandemic. At first glance, the question appears straightforward to answer. However, the origin of SARS-CoV-2 has been the topic of substantial debate primarily because we do not have access to some relevant data. At least two major hypotheses have been suggested: a natural origin through zoonosis followed by sustained human-to-human spread or the introduction of a natural virus into humans from a laboratory source. Here, we summarize the scientific evidence that informs this debate to provide our fellow scientists and the public with the tools to join the discussion in a constructive and informed manner. Our goal is to dissect the evidence to make it more accessible to those interested in this important problem. The engagement of a broad representation of scientists is critical to ensure that the public and policy-makers can draw on relevant expertise in navigating this controversy.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Pandemias
14.
J Virol ; 97(4): e0036523, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36897089

RESUMO

When humans experience a new, devastating viral infection such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), significant challenges arise. How should individuals as well as societies respond to the situation? One of the primary questions concerns the origin of the SARS-CoV-2 virus that infected and was transmitted efficiently among humans, resulting in a pandemic. At first glance, the question appears straightforward to answer. However, the origin of SARS-CoV-2 has been the topic of substantial debate primarily because we do not have access to some relevant data. At least two major hypotheses have been suggested: a natural origin through zoonosis followed by sustained human-to-human spread or the introduction of a natural virus into humans from a laboratory source. Here, we summarize the scientific evidence that informs this debate to provide our fellow scientists and the public with the tools to join the discussion in a constructive and informed manner. Our goal is to dissect the evidence to make it more accessible to those interested in this important problem. The engagement of a broad representation of scientists is critical to ensure that the public and policy-makers can draw on relevant expertise in navigating this controversy.


Assuntos
COVID-19 , Pandemias , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , COVID-19/transmissão , COVID-19/virologia , Laboratórios/normas , Pesquisa/normas , SARS-CoV-2/classificação , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Erro Científico Experimental , Zoonoses Virais/transmissão , Zoonoses Virais/virologia , Quirópteros/virologia , Animais Selvagens/virologia
15.
mBio ; 14(2): e0058323, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36897098

RESUMO

When humans experience a new, devastating viral infection such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), significant challenges arise. How should individuals as well as societies respond to the situation? One of the primary questions concerns the origin of the SARS-CoV-2 virus that infected and was transmitted efficiently among humans, resulting in a pandemic. At first glance, the question appears straightforward to answer. However, the origin of SARS-CoV-2 has been the topic of substantial debate primarily because we do not have access to some relevant data. At least two major hypotheses have been suggested: a natural origin through zoonosis followed by sustained human-to-human spread or the introduction of a natural virus into humans from a laboratory source. Here, we summarize the scientific evidence that informs this debate to provide our fellow scientists and the public with the tools to join the discussion in a constructive and informed manner. Our goal is to dissect the evidence to make it more accessible to those interested in this important problem. The engagement of a broad representation of scientists is critical to ensure that the public and policy-makers can draw on relevant expertise in navigating this controversy.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Pandemias
19.
J Virol ; 97(2): e0008923, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36700640

RESUMO

Viruses have brought humanity many challenges: respiratory infection, cancer, neurological impairment and immunosuppression to name a few. Virology research over the last 60+ years has responded to reduce this disease burden with vaccines and antivirals. Despite this long history, the COVID-19 pandemic has brought unprecedented attention to the field of virology. Some of this attention is focused on concern about the safe conduct of research with human pathogens. A small but vocal group of individuals has seized upon these concerns - conflating legitimate questions about safely conducting virus-related research with uncertainties over the origins of SARS-CoV-2. The result has fueled public confusion and, in many instances, ill-informed condemnation of virology. With this article, we seek to promote a return to rational discourse. We explain the use of gain-of-function approaches in science, discuss the possible origins of SARS-CoV-2 and outline current regulatory structures that provide oversight for virological research in the United States. By offering our expertise, we - a broad group of working virologists - seek to aid policy makers in navigating these controversial issues. Balanced, evidence-based discourse is essential to addressing public concern while maintaining and expanding much-needed research in virology.


Assuntos
Pesquisa , Virologia , Viroses , Humanos , COVID-19/prevenção & controle , Disseminação de Informação , Pandemias/prevenção & controle , Formulação de Políticas , Pesquisa/normas , Pesquisa/tendências , SARS-CoV-2 , Virologia/normas , Virologia/tendências , Viroses/prevenção & controle , Viroses/virologia , Vírus
20.
mBio ; 14(1): e0018823, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36700642

RESUMO

Viruses have brought humanity many challenges: respiratory infection, cancer, neurological impairment and immunosuppression to name a few. Virology research over the last 60+ years has responded to reduce this disease burden with vaccines and antivirals. Despite this long history, the COVID-19 pandemic has brought unprecedented attention to the field of virology. Some of this attention is focused on concern about the safe conduct of research with human pathogens. A small but vocal group of individuals has seized upon these concerns - conflating legitimate questions about safely conducting virus-related research with uncertainties over the origins of SARS-CoV-2. The result has fueled public confusion and, in many instances, ill-informed condemnation of virology. With this article, we seek to promote a return to rational discourse. We explain the use of gain-of-function approaches in science, discuss the possible origins of SARS-CoV-2 and outline current regulatory structures that provide oversight for virological research in the United States. By offering our expertise, we - a broad group of working virologists - seek to aid policy makers in navigating these controversial issues. Balanced, evidence-based discourse is essential to addressing public concern while maintaining and expanding much-needed research in virology.


Assuntos
COVID-19 , Infecções Respiratórias , Vírus , Humanos , COVID-19/prevenção & controle , SARS-CoV-2 , Pandemias/prevenção & controle , Vírus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...